

B2B PAYMENT SERVICE
B2B.IS

1

Introduction
B2B is a collection of webservices designed to simplify online banking and give a clear overview of

customers’ finances. All major bank transactions can be conducted directly from a customer’s

accounting system. B2B is a communication technology for corporate accounting systems that

exchanges information to and from the banks. Each company’s accounting system is used without

having to use the online bank. B2B is a powerful solution in the field of electronic services. With the

introduction of B2B, work processes can be shortened and accounting efficiency increases. B2B saves

time and decreases the probability of errors, since only one system is used, i.e., the accounting system

of the company in question. Additionally, there is greater opportunity to make informed decisions when

a real-time overview of accounting is available.

For further information, please contact Arion bank corporate services: arionbanki@arionbanki.is

2

Table of contents
Introduction.. 1

1 Common information .. 4

1.1 Access control ... 4

1.2 Web paths ... 4

1.3 Schema ... 4

1.4 Overview ... 4

2 Functions ... 4

2.1 Create payment ... 4

2.2 Create payments ... 5

2.3 Query payment .. 5

2.4 Query payments .. 5

3 Use Cases ... 5

3.1 Create a batch payment .. 5

3.2 Initiate a batch payment without using the online bank to confirm payments 5

3.3 Cancel creation of batch if errors are present ... 5

3.3.1 RollbackOnError payment process (not using “Straight through”) 5

3.3.2 RollbackOnError payment process (using “Straight through”) .. 6

3.4 Fetch receipts for payments .. 6

3.5 Initiate payment without using the online bank to confirm payments...................................... 6

3.6 Future payment batches ... 6

3.7 Future payments ... 7

3.8 Approval process .. 7

3.9 Claims with incurred expenses ... 7

3.10 Submitting a batch that is visible to all employees.. 7

4 Relationship with online bank .. 8

4.1 Batch processing ... 8

4.2 Initiating payments without using the online bank to confirm payments 8

4.3 Future payments and future batch payments ... 8

4.4 Approval process .. 9

5 Batch states ... 10

5.1 Payment process, not STP, RollbackOnError = false ... 10

5.2 Payment process, not STP, RollbackOnError = true .. 11

5.3 Payment process, STP, RollbackOnError = false ... 11

5.4 Payment process, STP, RollbackOnError = true .. 12

6 Fields.. 12

3

6.1 Service functions ... 12

6.2 Payment .. 13

6.3 Payments .. 13

6.3.1 PaymentOut .. 14

6.3.2 PaymentIn ... 14

6.3.3 ABGiro ... 14

6.3.4 CGiro ... 14

6.3.5 Claim ... 14

6.3.6 Transfer ... 15

6.3.7 Bond .. 15

6.4 Communication ... 15

6.4.1 CommunicationPostalMail ... 15

6.4.2 CommunicationEmail .. 15

6.4.3 CommunicationSMS ... 16

6.4.4 PhoneNumber ... 16

6.4.5 Address ... 16

6.5 PaymentId ... 16

6.6 PaymentStatus .. 16

6.7 PaymentsResult .. 16

6.7.1 Status (BatchStatus) for a batch payment .. 17

6.7.2 Status (BatchStatus) for a single payment .. 17

6.7.3 Success (PaymentResultDetails) .. 17

6.7.4 ClaimInfo ... 18

6.7.5 Errors (PaymentError) ... 18

6.7.6 Error .. 18

6.8 PaymentsResultQuery .. 18

6.9 IOBSFault .. 18

7 Known issues and unavailable functionality .. 19

8 Error examples ... 20

9 Changes from previous schema .. 20

4

1 Common information
This webservice allows you to make money transfers between accounts and pay claims. It is possible

to do a single payment, as well as a batch of payments in one call. Batch payments can be done in one

of two ways:

• Direct payment from your Account system through the payment service.

• Send batch payments through the service to the Arion online bank, where you are required to

log in and confirm the payment batch before it is executed.

By default, batch payments will stop in the Arion online bank until confirmed. To enable straight through

payments (STP), you need to contact Arion bank via email arionbanki@arionbanki.is to have the

configuration changed.

Users can view a list of executed and unexecuted batch payments in the online bank. For each batch

that has been executed, users can download a receipt with detailed information about the payment

execution. For example, which records were executed successfully and which ones hit an error.

1.1 Access control

The service has the same Access control as Arion online bank, by login and password. In addition to

login, all communication between Arion and your system must be signed by a certificate.

The webservice for Payments is built on a schema interface that all the major banks in Iceland have

agreed upon. The service has a WCF endpoint with a Mutual Authentication security model. The

information transmitted between systems is encrypted over HTTPS. More information on certificate and

installation can be found in the following document: http://b2b.is/services/Docs/UserManual-

AuthenticationAndCertificates-english.pdf

1.2 Web paths

The Payment service can be found at:

https://ws.b2b.is/Payments/20131015/PaymentService.svc

1.3 Schema

Schema can be found at:

https://ws.b2b.is/Payments/20131015/PaymentService.svc?wsdl

1.4 Overview

This documentation is intended for programmers who implement solutions to connect directly from their

system to Arion Bank’s B2B services. This document includes use cases, descriptions, and information

on the data format.

2 Functions
The B2B 2013 Payment Service can perform financial operations and requests on both single payments

and bulk payments. Single payments include credit transfers and claim payments. See chapter 6.1 for

more details on the input and output parameters of the functions.

2.1 Create payment

The function DoPayment creates a single transaction payment. The function supports credit

transactions and claim payments. After payment creation, the function responds with the status of the

payment.

mailto:arionbanki@arionbanki.is
http://b2b.is/services/Docs/UserManual-AuthenticationAndCertificates-english.pdf
http://b2b.is/services/Docs/UserManual-AuthenticationAndCertificates-english.pdf
https://ws.b2b.is/Payments/20131015/PaymentService.svc
https://ws.b2b.is/Payments/20131015/PaymentService.svc?wsdl

5

2.2 Create payments

The function DoPayments creates a batch payment. The function supports credit transactions and claim

payments. The response of the function will be a unique identifier for the batch that can be sent to the

query function GetPaymentsResult to get information on the status of the batch.

2.3 Query payment

The function GetPaymentResult is not implemented. When creating a payment with the DoPayment

function, the status of the payment is returned instantly.

2.4 Query payments

The function GetPaymentsResult returns the status of requested batch and the status of the payments

it holds. It also returns which payments within the batch resulted in an error.

3 Use Cases

3.1 Create a batch payment

Users can create a batch payment in their accounting system and send it to the B2B payment service.

The batch is then created in the Arion online bank and is visible on the “Batch Payments” page. The

user receives a unique ID for the batch and can go to the Arion online bank to view, delete, or confirm

(execute) the payment batch. It is not possible to edit the batch in the online bank, so errors must be

corrected in your account system. After correcting the errors, delete the old batch from the online bank

and send the new one in via the B2B service. It is possible to book batch payments in the online bank

even though it has errors. In that case, you will receive a confirmation for the payments that were

booked as well as the payments that resulted in an error. After analyzing the errors, you can correct

them in your accounting system and resubmit them, as described above.

3.2 Initiate a batch payment without using the online bank to confirm
payments

Users can create a batch payment in their accounting system that does not need to be confirmed in the

online bank. To do this, the user creating the batch must be configured as a “straight through” user. To

configure a user as a “straight through” user, the company’s power of attorney must contact Arion’s

corporate finance division and request to have this functionality configured (see chapter 4.2 for more

information). After a batch is created, it is confirmed (executed) automatically with the straight through

process. A unique identifier is returned by the function and information on the batch can be fetched

using the GetPaymentsResult (6.1) function, with the unique identifier as an input.

3.3 Cancel creation of batch if errors are present

Users can create a batch payment in their accounting system that is configured so the batch will not be

created if an error is present. To do this, the RollbackOnError parameter in the DoPayments (6.1)

function should be set to true. If errors are present and the batch is not created, the first error in the

batch will be returned.

3.3.1 RollbackOnError payment process (not using “Straight through”)
The steps below describe the RollbackOnError processes when there are errors present.

RollbackOnError = True

1. User creates a batch payment.

2. Batch is error checked.

3. There are errors present, batch is not created.

4. The first error in the batch is returned.

5. User cannot fetch information on the batch as it was not created.

6

RollbackOnError = False

1. User creates a batch payment.

2. Batch is error checked.

3. The batch is created, even if it has errors.

4. All the errors are returned.

5. User fetches information on the unconfirmed batch, such as its status and list of errors.

6. User goes to the online bank to confirm the payments that do not have an error.

7. User fetches information on the confirmed batch, along with a list of payments that did not get

confirmed due to errors.

8. User fixes the error payments in their accounting system and creates a new batch for those

payments.

9. User goes to the online bank to confirm the new batch.

3.3.2 RollbackOnError payment process (using “Straight through”)
The steps below describe the RollbackOnError processes when there are errors present.

RollbackOnError = True

1. User creates a batch payment.

2. Batch is error checked.

3. There are errors present, batch is not created.

4. The first error in the batch is returned.

5. User cannot fetch information on the batch, as it was not created.

RollbackOnError = False

1. User creates a batch payment.

2. Batch is error checked.

3. There are errors present.

4. Payments that do not have an error get confirmed, while payments with errors are not confirmed

(executed).

5. User fetches information on the confirmed batch, as well as a list of payments that did not get

confirmed due to errors.

6. User fixes the error payments in their accounting system and creates a new batch for those

payments.

3.4 Fetch receipts for payments

Users can fetch information on a batch by using the GetPaymentsResult (6.1) function. If the batch is

confirmed, the user will receive information on confirmed payments, as well as a list of payments that

could not be confirmed due to an error. If the batch is not confirmed, the user will receive two lists: one

of unconfirmed payments that do not have an error and one of unconfirmed payments that have an

error.

3.5 Initiate payment without using the online bank to confirm payments

Users can create a single payment (both credit transfers and claim payments) without needing to

confirm it in the online bank. To do this, the user creating the payment must be configured as a “straight

through” user (see chapter 3.2 and 4.2 for more information). The payment gets confirmed automatically

and information on the payment will be returned.

3.6 Future payment batches

Users can create future batch payments by setting the DateOfForwardPayment parameter in the

Payments (6.3) class as a date in the future. If information is fetched on the batch before the date of

7

payment execution, the date of future payment is returned along with other information. It is also

possible to see the date of future payment in the online bank.

3.7 Future payments

Users can create future payments by setting the DateOfForwardPayment parameter in the Payment

(6.26.3) class as a date in the future. It is possible to see the date of future payment in the online bank.

3.8 Approval process

If a user that creates a batch is configured to use the online bank approval process, the batch needs to

be approved in the online bank. For more details on the approval process, see chapter 4.4. Note that

the approval process is only available for batch payments.

3.9 Claims with incurred expenses

If a batch is created that does not need to be confirmed in the online bank (using straight through

processing, see chapters 3.2 and 4.2), and the batch includes a claim that has incurred costs such as

interest or other costs, the claim will be paid with all the incurred costs. This means that the total amount

of the batch payment might be higher than originally anticipated because of the incurred costs of the

claims within. If information on the batch is fetched, a breakdown of all the costs for the claims will be

retrieved.

If a batch is created that needs to be confirmed in the online bank and it includes a claim that has

incurred costs, the updated amount has not been calculated and the batch will get an error if a user

tries to confirm it.

When a single claim payment is created and it has incurred costs when it is confirmed, the total amount

withdrawn will be higher than the original claim amount. After creating such a payment, information on

it is returned immediately, along with a breakdown of all costs.

3.10 Submitting a batch that is visible to all employees

Batches created by the payment service are by default only visible to the person that created them in

the online bank. However, if an asterisk (*) is added to the front of the batch name, then the batch will

be visible to all users that have access to the company’s online bank. All of those users will be able to

view and confirm the batch in the online bank.

8

4 Relationship with online bank

4.1 Batch processing

The B2B payment webservice allows companies to create

payments from their own accounting system. They can be credit

transfers or claim payments, with both single payments and batch

payments available. There are two ways to confirm the payments:

either with the straight through process, where payments are

confirmed automatically without using the online bank; or they

can be sent to the online bank where they await confirmation. In

the latter case, users can access their batch payments on the

“Batch list” page, which is accessible from the sitemap on the

online bank. From there, it is possible to view, delete, or confirm

the batch payments. Note that it is not possible to edit the batch

in the online bank, as that would create a discrepancy between

the account system and the online bank. It is possible to confirm

batches that contain one or more payments with an error. In that

case however, only the payments without an error will be confirmed. When this occurs, the user will

need to delete the batch in the online bank, solve the errors in their account system, and create a new

batch with the resolved error payments.

4.2 Initiating payments without using the online bank to confirm
payments

Companies can request authorization for some employees to be able to confirm payments straight from

their account systems, without needing confirmation in the online bank. This functionality is called

straight through processing (STP) and is defined on a user level. If companies would like to incorporate

this functionality, their power of attorney holder needs to contact Arion’s corporate services and request

to have this functionality configured.

4.3 Future payments and future batch payments

Users can create future payments and future batch payments through the B2B payments service. By

fetching information on a batch via the GetPaymentResults (6.1) function, users can see the future

Figure 1: Location of Batch list on

sitemap

Figure 2: Registered batches (Batch list) in the online bank

9

payment date of the batch. It is also possible to see the future payment date of a batch in the online

bank interface in the list of registered batches (see Figure 3):

Figure 3: Future payment date highlighted

It is also possible to see the date of a future single payment by navigating to the Transactions/Forward

payments page on the sidebar (see Figure 4). Note that it is not possible to edit a future payment in the

online bank, as that would create a discrepancy between the online bank and the accounting system.

To change the due date, a user must delete the payment from the online bank and create it again with

a new due date.

Figure 4: Due date of future payment highlighted

4.4 Approval process

If a user that creates a batch payment that is configured to use the approval process, the batch will

follow the approval process flow. There are two types of users in the approval process, defined as A-

users and B-users:

A – User:

• Can create payments.

• Can pay approved payments from B users.

• Cannot approve payments from other users (A or B).

• Can pay payments that they have made themselves if a B user has approved it.

B – User (has more rights):

• Can create payments.

• Can approve payments from other users (A or B).

• Cannot approve payments that they have made themselves (B) but can approve payments

from another B user.

• Can pay payments that they have made themselves (B) if another B user has approved.

10

• Can pay approved payments from A users.

It is possible to view all pending payments in the online bank by navigating to the Transactions/Pending

payments page (see Figure 5).

Figure 5: Pending payments can be viewed in the online bank

5 Batch states
Status Description
InProgress Batch does not exist, or an unexpected error occurred on batch creation.

Completed Processing of batch is completed; all payments have been executed.

CompletedWithErrors Batch has been processed but one or more payment raised an error.

Cancelled A NotConfirmed batch has been cancelled, e.g., by a user in the online
bank UI.

OnHold A future batch payment will have the status OnHold until the date of future
payment.

NotConfirmed Batch has been created and is awaiting confirmation (execution) in the
online bank.
The batch can also have this status if straight through processing (STP)
is being used and all payments received an error (see chapters 3.2 and
4.2 for more details on straight through processing).

NotConfirmedWithErrors Batch has been created but could not be confirmed, as it contained errors.
In this case, the batch will not be confirmed unless a user logs in to the
online bank and confirms it manually. (See more information on
RollbackOnError in chapters 3.3 and in the chapter 5 subchapters below).

5.1 Payment process, not STP, RollbackOnError = false

The diagram above shows the payment process for a batch that should be confirmed in the online bank

and should not be rolled back if errors occur. After creating a batch, it will get the BatchStatus =

NotConfirmed regardless of whether or not it has any errors. The user can then confirm (execute) the

11

batch in the online bank and the status of the batch becomes either Completed or ConfirmedWithErrors,

depending on if it had errors. If any errors are present, the payments without an error will still get

confirmed. Note that it is not possible to correct the errors in the online bank, as it would create a

discrepancy between the account system and the online bank. Therefore, the user needs to delete the

batch in the online bank, solve the errors in their account system, and create a new batch with the

resolved error payments. It is possible to fetch the status of a batch, along with a list of payments that

raised an error, with the GetPaymentsResult (6.1) function. For more details on straight through

processing (STP) and RollbackOnError, see chapters 3.2, 3.3 and 4.2.

5.2 Payment process, not STP, RollbackOnError = true

The diagram above shows the payment process for a batch that should be confirmed in the online bank

but rolled back if errors are present after creation. If any errors are present after creation, the batch will

not be created and the first error in the batch will be returned. Note that it will not have any status since

it was not created. If no errors are present, the batch will get the status BatchStatus = NotConfirmed

and await confirmation in the online bank. Once the user confirms the batch in the online bank, the

status becomes either Completed or ConfirmedWithErrors, depending on whether or not it had any

errors (between the time of creation and confirmation, the batch can accumulate errors, e.g., when a

withdrawal account suddenly doesn’t have sufficient funds for the payment). If any errors are present,

the payments without an error will still get confirmed. Note that it is not possible to correct the errors in

the online bank, as it would create a discrepancy between the account system and the online bank.

Therefore, the user will need to delete the batch in the online bank, solve the errors in their account

system, and create a new batch with the resolved error payments. It is possible to fetch the status of a

batch, along with a list of payments that raised an error, with the GetPaymentsResult (6.1) function. For

more details on straight through processing (STP) and RollbackOnError, see chapters 3.2, 3.3 and 4.2.

5.3 Payment process, STP, RollbackOnError = false

The diagram above shows the payment process for a batch that should be confirmed automatically,

without involvement of the online bank, and not be rolled back if an error occurs after creation. If an

error occurs on all payments in the batch, it will still be created but it will not be confirmed. It will be

visible in the online bank, where it gets the status BatchStatus = NotConfirmed. This is done so that the

12

errors will not be lost. If one or more payments do not have an error, the batch will be automatically

confirmed through the straight through process (STP) and the status becomes either Completed or

ConfirmedWithErrors, depending on whether or not it had any errors. Note that it is not possible to

correct the errors in the online bank, as it would create a discrepancy between the account system and

the online bank. Therefore, the user will need to delete the batch in the online bank, solve the errors in

their account system, and create a new batch with the resolved error payments. It is possible to fetch

the status of a batch, along with a list of payments that raised an error, with the GetPaymentsResult

(6.1) function. For more details on straight through processing (STP) and RollbackOnError, see

chapters 3.2, 3.3 and 4.2.

5.4 Payment process, STP, RollbackOnError = true

The diagram above shows the payment process for a batch that should be confirmed automatically,

without involvement of the online bank, but rolled back if an error occurs after creation. If any errors are

present after creation, the batch will not be created and the first error in the batch will be returned. Note

that it will not have any status since it was not created. If no errors are present, the batch will be

automatically confirmed through the straight through process (STP) and the batch status becomes

either Completed or ConfirmedWithErrors, depending on whether or not it had any errors. Note that it

is not possible to correct the errors in the online bank, as it would create a discrepancy between the

account system and the online bank. Therefore, the user will need to delete the batch in the online

bank, solve the errors in their account system, and create a new batch with the resolved error payments.

It is possible to fetch the status of a batch, along with a list of payments that raised an error, with the

GetPaymentsResult (6.1) function. For more details on straight through processing (STP) and

RollbackOnError, see chapters 3.2, 3.3 and 4.2.

6 Fields
This chapter contains information on the input and output fields of the Payment Service.

6.1 Service functions

List of functions within the Payment Service:

Function Input Output Description
DoPayment Payment (6.2) PaymentsResult (6.7) Creates a single payment

DoPayments Payments (6.2) PaymentId (6.5) Creates a payment batch

GetPaymentResult - - Not Implemented.

GetPaymentsResult PaymentsResultQuery
(6.8)

PaymentsResult (6.7) Fetches information on a
payment batch.

13

6.2 Payment

The Class Payment is an input to the function DoPayment. The fields Out and In are mandatory, while

the DateOfForwardPayment field is optional and only used for future payments.

Parameter Description
Out (6.3.1) Contains information on the withdrawal of the payment

In (6.3.2) Contains information on the deposit of the payment.

DateOfForwardPayment Optional field.
Date of future payment. Only used if the payment is to be executed in the
future. If this field is empty, then the payment is executed straight away.
Note: Date needs to be in the future. It is not possible to create multiple,
identical payments on the same day between the same payment account
and receiving account. Future payments are not available to and from
account types (ledgers) 36 and 38.

6.3 Payments

The Class Payments is an input to the function DoPayments.

Parameter Description
Out (6.3.1) Contains information on the withdrawal of the payment

In (6.3.2) Contains information on the deposit of the payment.

DateOfForwardPayment Optional field.
Date of future payment of batch. Only used if the batch payment is to be
executed in the future. If this field is empty, the batch is sent to the online
bank straight away or executed straight away if the user creating the
payment is defined as a straight through user (see chapters 3.2 and 4.2).
Note: Date needs to be in the future. Future payments are not available
to and from account types (ledgers) 36 and 38.

RollbackOnError If RollbackOnError = true and an error occurs, the payment batch is
deleted and an error is returned to the user (see chapter 3.3).

If RollbackOnError = false and an error occurs, the batch is created in the
online bank even though there are errors in the batch.

If RollbackOnError = false and an error occurs, and the user creating the
payment is defined as a straight through user (see chapters 3.2 and 4.2),
the payments that do not have an error get confirmed (executed), and the
payments that have an error are not. The batch will get the status
“CompletedWithErrors” and details on the errors can be found in the
Errors class (6.7.5) within the PaymentsResult class (6.7).

Further details on these scenarios can be found in chapter 5.

IsOneToMany This functionality is not fully implemented, so we recommend using
IsOneToMany = true.
If true, then one payment will be withdrawn from the payment account for
the whole batch.
If false, then one payment will be withdrawn from the payment account
for each of the payments in the batch. (This will work if there are no errors,
but if errors occur then they will not be visible in the response.)

NameOfBatch Name of the batch that will be visible on the “Batch Payments” page in
the online bank.
If an asterisk (*) is placed at the beginning of the name, the batch will be
visible to all employees in the online bank that have permission to confirm
payments.

14

6.3.1 PaymentOut
The class PaymentOut is part of the Payment/Payments inputs for the DoPayment/DoPayments

functions. Account and AccountOwnedID are mandatory. This class is also an output of the

PaymentsResult (6.7) class.

Parameter Description
Account Account number of the withdrawal account (e.g., 030126123456).

AccountOwnerID Kennitala (national registry ID number) of withdrawal account owner.

CategoryCode Not used. (The CategoryCode from the Item parameter in the PaymentIn
class will be used for both deposit and withdrawal accounts.)

Reference Not used. (The Reference from the Item parameter in the PaymentIn class
will be used for both deposit and withdrawal accounts.)

Billnumber Not used. (The Billnumber from the Item parameter in the PaymentIn
class will be used for both deposit and withdrawal accounts.)

Receipt Contains information on the payment for the payee or recipient. Receipt
is of the class type Communication (0).
Only used for batch payments, the receipt is sent for the whole batch.
(Note that in the PaymentIn (6.3.2) class, the Receipt field is used for both
single payments and individual payments within a batch.)

SecurityCode Pin number for the withdrawal account.

6.3.2 PaymentIn
The class PaymentIn is part of the Payment/Payments parameters for the DoPayment/DoPayments

functions. Item and Amount are mandatory fields, while Description, BookingID, and Receipt are

optional.

Parameter Description
Item Specifies what kind of payment. Possible payment types are:

• Claim (6.3.5)

• Transfer (6.3.6)
Note: Payment types ABGiro, CGiro, and Bond are no longer supported.

Description A description that is used in the online bank and in communication.

BookingID Not implemented

Receipt Contains information on the payment for the payee or recipient.
Receipts can be sent for single payments as well as for each individual
payment within a batch.
Receipt is of the class type Communication (0).

Amount The amount to be paid in Icelandic krónas (ISK).

6.3.3 ABGiro
Retired functionality.

6.3.4 CGiro
Retired functionality.

6.3.5 Claim
The class Claim is used for the item parameter in the PaymentIn (6.3.2) class and contains information

about the claim to be paid. All fields are mandatory.

Parameter Description
Account Claim identifier containing branch ID (first 4 digits), account type (next 2

digits), and the claim number (last 6 digits). E.g., 030126001234.

PayorID Kennitala (national registry ID number) of the payor.

DueDate Due date of the claim.

IsDeposit If true, the payment will act as a partial payment of the claim. If false, the
claim will be fully paid. Note that this is only implemented for single
payments, not batch payments.

Claimant Kennitala (national registry ID number) of the claimant.

15

6.3.6 Transfer
The class Transfer is used for the item parameter in the PaymentIn (6.3.2) and contains information on

account-to-account transfers. The Account and AccountOwnerId fields are mandatory, while the

CategoryCode, Reference, and Billnumber fields are optional. The Transfer class is also for the output

parameter Item in the PaymentResultDetails (6.7.3) class.

Parameter Description
Account Account number of recipient, containing branch ID (first 4 digits), account

type (next 2 digits), and the account number (last 6 digits). E.g.,
030126001234.

AccountOwnerId Kennitala (national registry ID number) of the recipient.

CategoryCode Code used to categorize payments in account systems (e.g., 03 =
transfer, 04 = salary). Only used for batch payments.

Reference 16-character reference field, usually kennitala (national registry ID
number) of payor or recipient. The reference will be visible on both the
payor and recipient accounts.

Billnumber 7-character text that is intended as an ID, short message, or description
that will be communicated across different banks. Often, “Seðilnúmer” is
used.

6.3.7 Bond
Retired functionality.

6.4 Communication

The class Communication contains information that can be used to send notifications to recipient or

payor. The notification can be an email or an SMS message.

Parameter Description
PostalMail (6.4.1) Retired functionality (not implemented).

Email (6.4.2) Information used to send an email notification.

SMS (6.4.3) Information used to send an SMS message.

6.4.1 CommunicationPostalMail
Retired functionality.

6.4.2 CommunicationEmail
The class CommunicationEmail contains information on the recipient of the email. It is only possible to

send one email per payment in a batch. For a single payment, it is possible to send two emails. For the

batch as a whole, it is possible to send two emails. The EmailAddress field is mandatory, while the

Language field is optional.

Parameter Description
EmailAddress Email address of email recipient.

Language Language of email. Possible options are:

• ISL (Icelandic)

• ENG (English)

• POL (Polish)

• DAN (Danish)
If field is empty, the email will be in Icelandic.
The ISO 639 language standard is used, see
http://www.loc.gov/standards/iso639-2/iso639jac.html for more details.

http://www.loc.gov/standards/iso639-2/iso639jac.html

16

6.4.3 CommunicationSMS
The class CommunicationSMS contains information about the recipient of the text message. The

PhoneNumber field is mandatory, while the Language field is optional.

Parameter Description
PhoneNumber (6.4.4) Information on the phone number to receive the receipt.

Language Language of the text message. Possible options are:

• ISL (Icelandic)

• ENG (English)

• POL (Polish)
If field is empty, the email will be in Icelandic.
The ISO 639 language standard is used, see
http://www.loc.gov/standards/iso639-2/iso639jac.html for more details.

6.4.4 PhoneNumber
The class PhoneNumber contains information on the phone number that will receive a receipt from the

CommunicationSMS (6.4.3) class.

Parameter Description
Number Phone number of recipient

CountryCode Not implemented. Only text messages to Icelandic numbers are supported.

6.4.5 Address
Retired functionality. Was used for postal mails, which are no longer offered.

6.5 PaymentId

Unique identifier for a batch payment.

6.6 PaymentStatus

The type PaymentStatus is used to filter which payments to fetch when using the PaymentsResultQuery

(6.8) class in the GetPaymentsResult (6.1) function.

Parameter Description
GetStatus Fetches the status of the batch.

GetErrors Fetches the status of the batch and a list of payments that could not be
executed.

GetSuccess Fetches the status of the batch and a list of payments that were executed.

GetAll Fetches the status of the batch and a list of all the payments within the batch
(both executed payments and those where an error occurred).

6.7 PaymentsResult

The class PaymentsResult contains information on the result of single payments and batch payments.

Parameter Description
ID Unique identifier of batch payment (6.5).

For single payments, a processing number from our system is returned
which is not unique.

Status For batch payments: Status of batch (6.7.1)
For single payments: Status of single payment (6.7.2)

Success (6.7.3) List of payments that were successfully executed.

Errors (6.7.5) List of payments that were not executed due to an error.

DateOfPayment Date of payment for batch or single payment.
If the batch is not executed, the date “01.01.0001” is returned.

http://www.loc.gov/standards/iso639-2/iso639jac.html

17

DateOfForwardPayment Date of future payment only applies to future payments. If payment is not
a future payment, the date “01.01.0001” is returned.

Out (6.3.1) Information on the withdrawal account and account owner. The response
is of the class type PaymentOut (6.3.1).

6.7.1 Status (BatchStatus) for a batch payment
The type BatchStatus contains information on the status of a batch payment.

Status Description
InProgress Batch does not exist, or an unexpected error occurred on batch creation.

Completed Processing of batch is complete, and all payments have been executed.

CompletedWithErrors Batch has been processed, but one or more payments raised an error.

Cancelled A NotConfirmed batch has been cancelled, e.g., by a user in the online
bank UI.

OnHold A future batch payment will have the status OnHold until the date of future
payment.

NotConfirmed Batch has been created and is waiting to be confirmed (executed) in the
online bank.
The batch can also get this status if straight through processing (STP) is
being used and all payments received an error (see chapters 3.2 and 4.2
for more details on straight through processing).

NotConfirmedWithErrors Batch has been created but could not be confirmed because it contained
errors. In this case, the batch will not be confirmed unless a user logs on
to the online bank and confirms it manually. (See more information on
RollbackOnError in chapters 3.3 and 5.)

6.7.2 Status (BatchStatus) for a single payment
The class BatchStatus can also be used for information on the status of a single payment. In this case,

some fields are not applicable.

Status Description
InProgress Not applicable

Completed Payment is confirmed.

CompletedWithErrors Not applicable

Cancelled Not applicable

OnHold A future payment will have the status OnHold until the date of future
payment.

NotConfirmed Payment is not confirmed.

6.7.3 Success (PaymentResultDetails)
The class PaymentResultDetails contains details on a payment that has been confirmed (executed).

Parameter Description
Item Type of payment. Possible payment types are:

• Claim (6.3.5)

• Transfer (6.3.6)

Note: Payment types ABGiro, CGiro, and Bond are no longer supported.

Amount Total amount that was paid.
For claims, this amount will include any interests and incurred costs, if
applicable, so the amount might be higher than the original claim amount.
(See more details on claims with incurred costs in chapter 3.9.)

Receipt (0) Receipt with information on the payment.

Description A description that is used in the online bank and in communication.

BookingID Not implemented

18

6.7.4 ClaimInfo
The class ClaimInfo contains information on a claim.

Parameter Description
Account Claim identifier containing branch ID (first 4 digits), account type (next 2

digits), and the claim number (last 6 digits). E.g., 030126001234.

Claimant Kennitala (national registry ID number) of the claimant.

PayorID Kennitala (national registry ID number) of the payor.

DueDate Due date of the claim.

IsDeposit If true, the payment will act as a partial payment of the claim. If false, the
claim will be fully paid. Note that this is only implemented for single
payments, not batch payments.

AmountDue Amount due for the claim in Icelandic krónas, excluding any incurred
costs (see more details on claims with incurred costs in chapter 3.9).

DefaultCost Default cost.

OtherCost Other cost.

OtherDefaultCost Other default cost.

DefaultInterest Default interest.

NoticeAndPaymentFee Notice and payment fee.

Discount Discount.

CategoryCode Code used to categorize payments for accounting systems (e.g., 03 =
credit transaction, 04 = salary).

6.7.5 Errors (PaymentError)
The class PaymentError contains information on a payment that has raised an error.

Parameter Description
Payment (6.3.2) Information on the payment. The PaymentIn class is returned.

Error (6.7.6) Information on the error.

6.7.6 Error
The class Error contains an error code and an error message that describes what went wrong when

trying to execute a payment.

Parameter Description
Code Error code for the resulting error. Can be different across banks.

Message Error message for the resulting error. Can be different across banks.

6.8 PaymentsResultQuery

The class PaymentsResultQuery is used as an input for the GetPaymentsResult function (6.1).

Parameter Description
PaymentId (6.5) Unique identifier for the batch payment.

PaymentStatus (6.6) A parameter used to filter which payments to receive from the batch.

6.9 IOBSFault

The Class IOBSFault has information on errors that can be raised.

Parameter Description
GeneralErrorCode General error code.

GeneralErrorText General error text.

SourceErrorCode Error code from underlying system. Not Implemented.

SourceErrorText Error text from underlying system. Not Implemented.

19

GeneralSourceCode Technical error code from underlying system.

GeneralSourceText Technical error text from underlying system.

GeneralErrorCode GeneralErrorText Description
0001 Service is unavailable The service is unavailable.

1000 An error occurred General error message with
possible details.

1100 Access to the operation is not present The function is restricted, access
is needed.

1200 Data could not be validated Input data could not be validated
according to the XML Schema.

1300 Business logic error General error in business logic.

An example of an error:

7 Known issues and unavailable functionality

1. It is not possible to send more than one SMS message or email per payment in batch.

2. The approval process is implemented for batch payments, but not for single payments. (For

more information on the approval process, see chapters 3.8 and 4.4.)

3. Foreign payments are not implemented. It is not possible to transfer between currency accounts

(account types 36 and 38), nor is it possible to pay claims in foreign currency. This includes

single payments and batch payments.

4. In batch payments, the functionality of withdrawing one payment for each individual payment

in a batch (using IsOneToMany = false in the Payments (6.3) class) is not fully implemented.

This will work if there are no errors, but if errors occur then they will not be visible in the

response. Therefore, we recommend using IsOneToMany = true for all batch payments.

<Fault>

<Action>http://IcelandicOnlineBanking/2013/10/15/GetPaymentResult

</Action>

<Code>System.ServiceModel.FaultCode</Code>

<Reason> The method or operation is not implemented.</Reason>

<Detail>

<IOBSFault>

<GeneralErrorText> An error occurred.</GeneralErrorText>

<GeneralErrorCode>1000</GeneralErrorCode>

<BanksErrorText> The method or operation is not implemented.

</BanksErrorText>

<BanksErrorCode>14000</BanksErrorCode>

<GeneralSourceText></GeneralSourceText>

<GeneralSourceCode></GeneralSourceCode>

</IOBSFault>

</Detail>

</Fault>

20

5. It is not possible to do a partial payment of a claim when using batch payments (using IsDeposit

= true in the claims (6.3.5) class. However, it is implemented for single payments.

6. The function GetPaymentResult (6.1) for single payments is not implemented. However, the

payment result is always returned when doing single payments with the DoPayment (6.1)

function.

7. For batch receipts, the due date is not returned for claim payments (DueDate value in the

ClaimInfo (6.7.4) class.

8 Error examples
1. Villuskilaboð: FLYK HBOK

This error occurs when trying to create a batch where the transaction key does not match the

account type (ledger). This usually occurs when trying to do a partial payment of a claim within

a batch payment.

2. 4402 Notandi á ekki reikningsnúmerið

This error occurs if the withdrawal account does not match the user that is authenticated and

using the service.

Abbreviations Description
Bank Branch ID

Hbok Account type/ledger (Höfuðbók)

Rnum Account number or claim number (Reikningsnúmer)

Flyk Transaction key (Færslulykill)

Ktal National registry ID number (Kennitala)

Vald Valuedate

Tlyk Category code (Textalykill), e.g., 04 = salary

Slnr Bill number (Seðilnúmer)

Upph Amount (Upphæð)

Tilv Reference number (Tilvísunarnúmer)

Gjdg Due date (Gjalddagi)

9 Changes from previous schema
The following changes have been made from the 2005 B2B schema:

Chapter Description
6.3.1 New parameter SecurityCode in the class PaymentOut.

6.3.5 Class name changed from PaymentSlip to Claim. Two new parameters:
Claimant and PayorID. One parameter removed: PersonID.

6.3.7 New class Bond

6.7 Class PaymentsResult has two new parameters: DateOfForwardPayment
and Out.

6.7.1 New status NotConfirmedWithErrors in Enum BatchStatus.

6.7.2 New status NotConfirmedWithErrors in Enum BatchStatus.

6.7.2, 6.7.3 Change of possible inputs for the Item parameter.

6.7.4 PaymentSlipInfo is now called ClaimInfo. Two new parameters: Claimant
and PayorID. One parameter removed: PersonID.

6.9 Error class name changed from BankErrorFault to IOBSFault. Two new
parameters added: GeneralSourceText and GeneralSourceCode.

